Wednesday, March 30, 2011

NASA Announces 2011 Carl Sagan Fellows

0 comments
NASA has selected five potential discoverers as the recipients of the 2011 Carl Sagan Postdoctoral Fellowships, named after the late astronomer. The Carl Sagan Fellowship takes a theme-based approach, in which fellows will focus on compelling scientific questions, such as "Are there Earth-like planets orbiting other stars?"

Sagan once said, "Somewhere, something incredible is waiting to be known," which is in line with the Sagan Fellowship's primary goal: to discover and characterize planetary systems and Earth-like planets around other stars. Planets outside of our solar system are called exoplanets. The fellowship also aims to support outstanding recent postdoctoral scientists in conducting independent research broadly related to the science goals of NASA's Exoplanet Exploration Program.

Previous Sagan Fellows have contributed significant discoveries in exoplanet exploration. including: the first characterizations of a super-Earth's atmosphere using a ground-based telescope; and the discovery of a massive disk of dust and gas encircling a giant young star, which could potentially answer the long-standing question of how massive stars are born.

"The Sagan Fellowship program seeks to identify the most highly qualified young researchers in the field of exoplanets. Nowhere is the dynamism of this young branch of astronomy demonstrated more dramatically than by the intellectual quality and enthusiasm of these five new Sagan Fellows," said Charles Beichman, executive director of the NASA Exoplanet Science Institute at the California Institute of Technology in Pasadena. "These scientists are certain to be leaders of this exciting and rapidly growing field for many years to come."

The program, created in 2008, awards selected postdoctoral scientists with annual stipends of approximately $64,500 for up to three years, plus an annual research budget of up to $16,000. Topics range from techniques for detecting the glow of a dim planet in the blinding glare of its host star, to searching for the crucial ingredients of life in other planetary systems.

The 2011 Sagan Fellows are:

-- David Kipping, who will work at the Harvard-Smithsonian Center for Astrophysics, Cambridge, to combine theory and observation to conduct a search for the moons of exoplanets.

-- Bryce Croll, who will work at the Massachusetts Institute of Technology, Cambridge, Mass., to characterize the atmospheres of both large and small exoplanets using a variety of telescopes.

-- Wladimir Lyra, who will work at NASA's Jet Propulsion Laboratory, Pasadena, Calif., to study planet-forming disks and exoplanet formation.

-- Katie Morzinski, who will work at the University of Arizona, Tucson, to commission and employ high-contrast adaptive optics systems that will directly image Jupiter-like exoplanets.

-- Sloane Wiktorowicz, who will work at the University of California, Santa Cruz to use a technique called optical polarimetry to directly detect exoplanets.

NASA has two other astrophysics theme-based fellowship programs: the Einstein Fellowship Program, which supports research into the physics of the cosmos, and the Hubble Fellowship Program, which supports research into cosmic origins. The Sagan Fellowship Program is administered by the NASA Exoplanet Science Institute as part of NASA's Exoplanet Exploration Program at JPL in Pasadena, Calif. The California Institute of Technology manages JPL for NASA.

Monday, March 28, 2011

Cassini Finds Saturn Sends Mixed Signals

0 comments
Recent data from NASA's Cassini spacecraft show that the variation in radio waves controlled by the planet's rotation is different in the northern and southern hemispheres. Moreover, the northern and southern rotational variations also appear to change with the Saturnian seasons, and the hemispheres have actually swapped rates. These two radio waves, converted to the human audio range, can be heard in a new video available online at: http://www.nasa.gov/multimedia/videogallery/index.html?media_id=74390781

"These data just go to show how weird Saturn is," said Don Gurnett, Cassini's radio and plasma wave science instrument team lead and professor of physics at the University of Iowa, Iowa City. "We thought we understood these radio wave patterns at gas giants, since Jupiter was so straightforward. Without Cassini's long stay, scientists wouldn't have understood that the radio emissions from Saturn are so different."

Saturn emits radio waves known as Saturn Kilometric Radiation, or SKR for short. To Cassini, they sound a bit like bursts of a spinning air raid siren, since the radio waves vary with each rotation of the planet. This kind of radio wave pattern had been previously used at Jupiter to measure the planet's rotation rate, but at Saturn, as is the case with teenagers, the situation turned out to be much more complicated.

When NASA's Voyager spacecraft visited Saturn in the early 1980s, the radiation emissions indicated the length of Saturn's day was about 10.66 hours. But as its clocking continued by a flyby of the joint ESA-NASA Ulysses spacecraft and Cassini, the radio burst varied by seconds to minutes. A paper in Geophysical Research Letters in 2009 analyzing Cassini data showed that the Saturn Kilometric Radiation was not even a solo, but a duet, with two singers out of sync. Radio waves emanating from near the north pole had a period of around 10.6 hours; radio waves near the south pole had a period of around 10.8 hours.

A new paper led by Gurnett that was published in Geophysical Research Letters in December 2010 shows that, in recent Cassini data, the southern and northern SKR periods crossed over around March 2010, about seven months after equinox, when the sun shines directly over a planet's equator. The southern SKR period decreased from about 10.8 hours on Jan. 1, 2008 and crossed with the northern SKR period around March 1, 2010, at around 10.67 hours. The northern period increased from about 10.58 hours to that convergence point.

Seeing this kind of crossover led the Cassini scientists to go back into data from previous Saturnian visits. With a new eye, they saw that NASA's Voyager data taken in 1980, about a year after Saturn's 1979 equinox, showed different warbles from Saturn's northern and southern poles. They also saw a similar kind of effect in the Ulysses radio data between 1993 and 2000. The northern and southern periods detected by Ulysses converged and crossed over around August 1996, about nine months after the previous Saturnian equinox.

Cassini scientists don't think the differences in the radio wave periods had to do with hemispheres actually rotating at different rates, but more likely came from variations in high-altitude winds in the northern and southern hemispheres. Two other papers involving Cassini investigators were published in December, with results complementary to the radio and plasma wave science instrument -- one by Jon Nichols, University of Leicester, U.K., in the same issue of Geophysical Research Letters, and the other led by David Andrews, also of University of Leicester, in the Journal of Geophysical Research.

In the Nichols paper, data from the NASA/ESA Hubble Space Telescope showed the northern and southern auroras on Saturn wobbled back and forth in latitude in a pattern matching the radio wave variations, from January to March 2009, just before equinox. The radio signal and aurora data are complementary because they are both related to the behavior of the magnetic bubble around Saturn, known as the magnetosphere. The paper by Andrews, a Cassini magnetometer team associate, showed that from mid-2004 to mid-2009, Saturn's magnetic field over the two poles wobbled at the same separate periods as the radio waves and the aurora.

"The rain of electrons into the atmosphere that produces the auroras also produces the radio emissions and affects the magnetic field, so scientists think that all these variations we see are related to the sun's changing influence on the planet," said Stanley Cowley, a co-author on both papers, co-investigator on Cassini's magnetometer instrument, and professor at the University of Leicester.

As the sun continues to climb towards the north pole of Saturn, Gurnett's group has continued to see the crossover trend in radio signals through Jan. 1, 2011. The period of the southern radio signals continued to decrease to about 10.54 hours, while the period of the northern radio signals increased to 10.71 hours.

"These papers are important in helping to explain the complicated dance between the sun and Saturn's magnetic bubble, something normally invisible to the human eye and imperceptible to the human ear," said Marcia Burton, a Cassini fields and particles scientist at NASA's Jet Propulsion Laboratory, Pasadena, Calif., who was not involved in the work. "Cassini will continue to keep an eye on these changes."

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. JPL, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The radio and plasma wave science team is based at the University of Iowa, Iowa City, where the instrument was built. The magnetometer team is based at Imperial College, London, U.K.

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C.

Friday, March 25, 2011

Juno Marches On

0 comments
NASA's Juno spacecraft has completed its thermal vacuum chamber testing. The two-week-long test, which concluded on March 13, 2011, is the longest the spacecraft will undergo prior to launch.

In the image, a technician is attaching the lifting equipment in preparation for hoisting the 1,588-kilogram (3,500-pound) spacecraft out of the chamber. Prominent in the photo is one of three large, black, square solar array simulators, which reproduced the thermal properties of Juno's large solar arrays.

The actual solar arrays Juno will use to power the spacecraft during its voyage to, and its exploration of, Jupiter have already been shipped to NASA's Kennedy Space Center in Florida. The main body of the Juno spacecraft, including its suite of science instruments, is scheduled to ship to Kennedy in early April, where it will undergo final preparations and launch.

NASA's Jet Propulsion Laboratory, Pasadena, Calif., manages the Juno mission for the principal investigator, Scott Bolton, of Southwest Research Institute at San Antonio. The Juno mission is part of the New Frontiers Program managed at NASA's Marshall Space Flight Center in Huntsville, Ala. Lockheed Martin Space Systems, Denver, is building the spacecraft.

The Italian Space Agency in Rome is contributing an infrared spectrometer instrument and a portion of the radio science experiment. JPL is a division of the California Institute of Technology in Pasadena.

Thursday, March 24, 2011

Stars Gather in 'Downtown' Milky Way

0 comments
The region around the center of our Milky Way galaxy glows colorfully in this new version of an image taken by NASA's Spitzer Space Telescope.

The data were previously released as part of a long, 120-degree view of the plane our galaxy (see http://www.spitzer.caltech.edu/images/2680-ssc2008-11a-Spitzer-Finds-Clarity-in-the-Inner-Milky-Way). Now, data from the very center of that picture are being presented at a different contrast to better highlight this jam-packed region. In visible-light pictures, it is all but impossible to see the heart of our galaxy, but infrared light penetrates the shroud of dust giving us this unprecedented view.

In this Spitzer image, the myriad of stars crowding the center of our galaxy creates the blue haze that brightens towards the center of the image. The green features are from carbon-rich dust molecules, called polycyclic aromatic hydrocarbons, which are illuminated by the surrounding starlight as they swirl around the galaxy's core. The yellow-red patches are the thermal glow from warm dust. The polycyclic aromatic hydrocarbons and dust are associated with bustling hubs of young stars. These materials, mixed with gas, are required for making new stars.

The brightest white feature at the center of the image is the central star cluster in our galaxy. At a distance of 26,000 light years away from Earth, it is so distant that, to Spitzer's view, most of the light from the thousands of individual stars is blurred into a single glowing blotch. Astronomers have determined that these stars are orbiting a massive black hole that lies at the very center of the galaxy.

The region pictured here is immense, with a horizontal span of 2,400 light-years (5.3 degrees) and a vertical span of 1,360 light-years (3 degrees). Though most of the objects seen in this image are located near the galactic center, the features above and below the galactic plane tend to lie closer to Earth.

The image is a three-color composite, showing infrared observations from two of Spitzer instruments. Blue represents 3.6-micron light and green shows 8-micron light, both captured by Spitzer's infrared array camera. Red is 24-micron light detected by Spitzer's multiband imaging photometer. The data is a combination of observations from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) project, and the Multiband Imaging Photometer for Spitzer Galactic survey (MIPSGAL).

Wednesday, March 23, 2011

Alternatives Have Begun in Bid to Hear from Spirit

0 comments
Hopes for reviving NASA's Spirit Mars rover dimmed further with passage last week of the point at which the rover's locale received its maximum sunshine for the Martian year.

The rover team has tried to contact Spirit for months with strategies based on the possibility that increasing energy availability might wake the rover from hibernation. The team has now switched to communication strategies designed to address more than one problem on the rover. If no signal is heard from Spirit in the next month or two, the team at NASA's Jet Propulsion Laboratory, Pasadena, Calif., will shift to single-rover operations, continuing to operate Spirit's active twin, Opportunity.

"The commands we are sending starting this week should work in a multiple-fault scenario where Spirit's main transmitter is no longer working and the mission clock has lost track of time or drifted significantly," said JPL's John Callas, project manager for Spirit and Opportunity.

Spirit landed on Mars Jan. 4, 2004 Universal Time (Jan. 3, Pacific Time) for a mission designed to last for three months. After accomplishing its prime-mission goals, Spirit worked for more than five years in bonus-time extended missions.

Spirit has not communicated since March 22, 2010. Power output from its solar array had been waning prior to that, and the rover had been expected to go into a low-power hibernation mode. With drive motors on two of its six wheels no longer working, Spirit had been unable in preceding months to maneuver much in its sand-trap location. The rover could not get to a favorable tilt for its solar panels as Martian winter approached.

During the Martian winter with most heaters turned off, Spirit experienced colder internal temperatures than in any of its three previous winters on Mars. The cold could have damaged any of several electronic components that, if damaged, would prevent reestablishing communication with Spirit.

However, attempts to regain contact have continued for more than eight months in the possibility that the seasonal increase in solar energy available at Spirit's location would revive the rover. NASA's Deep Space Network of antennas in California, Spain and Australia has been listening for Spirit daily. The rover team has also sent commands to elicit a response from the rover even if the rover has lost track of time, or if its receiver has degraded in frequency response.

The available solar energy at Spirit's site was estimated to peak on March 10. Revised commanding began March 15, including instructions for the rover to be receptive over UHF relay to hailing from the Mars orbiters for extended periods of time and to use a backup transmitter on the rover.

Spirit and Opportunity both have made important discoveries about wet environments on ancient Mars that may have been favorable for supporting microbial life. Opportunity landed three weeks after Spirit.

JPL, a division of the California Institute of Technology in Pasadena, manages the Mars Exploration Rover project for NASA's Science Mission Directorate, Washington.

Monday, March 21, 2011

NASA Picks a Festive Clover of Ireland Images

0 comments
March 17 marks St. Patrick's Day —a day when shamrocks, Ireland and "wearing of the green" are especially in vogue. To celebrate this festive occasion, NASA's Aqua satellite has picked a clover of different views of the Emerald Isle, Ireland.

The collection of images acquired by Aqua's Atmospheric Infrared Sounder (AIRS) instrument on March 3, 2011, includes near-infrared/visible, infrared and microwave light views of the land where St. Patrick's Day originated.

The AIRS instrument measures temperatures of land, sea and air to provide a better understanding of what is happening in those environments.

The clover of AIRS images reveal temperatures near Earth's surface that were near normal for this time of year. The visible image showed a mostly cloud-free country blanketed by an approaching cold front. The infrared image showed low western clouds associated with a cold front moving east. The microwave brightness temperature data are a bit colder than the infrared temperature data, 273 Kelvin, which is just at the freezing point of water (0 degrees Celsius, or 32 degrees Fahrenheit).

For more information about these images, visit: http://www.nasa.gov/topics/earth/features/aqua-clover.html .

AIRS observes and records the global daily distribution of temperature, water vapor, clouds and several atmospheric gases, including ozone, methane and carbon monoxide. For more on AIRS, see http://airs.jpl.nasa.gov/ .

Friday, March 18, 2011

Students Compete in Lego Robotics Challenge at JPL

0 comments
Near a testing chamber at NASA's Jet Propulsion Laboratory, where a team of technicians are preparing and testing NASA's next Mars rover, students from across Southern California gathered to compete in a robotics challenge that simulated planetary exploration using table-top sized robots made out of Lego pieces.

The school teams spent months creating small Lego robots programmed with special software for this contest, which included placing sensors in "volcanoes," deploying habitats and rescuing a stranded "moon buggy." The robotic competition aims to engage students in math, science, technology and engineering. Each team had four students. The contest was divided into two sections: one for elementary-school teams, and the other for middle- and high-school teams.

In between the competition rounds and the awards ceremony, JPL robotics engineer Paulo Younse gave the students a special presentation on robotics at JPL featuring a video on Mars Science Laboratory, which features the rover named Curiosity, and how it works.

The Lego Robotics competition was streamed live on the Web. A video of the event can be viewed at http://livestre.am/F8jU .

JPL, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory mission for the NASA Science Mission Directorate, Washington.

For more information about the next mission to Mars, visit http://mars.jpl.nasa.gov/msl/ .

More information about robotics programs for students can be found online at http://www.usfirst.org/roboticsprograms/fll/default.aspx .

List of Winners:

ELEMENTARY DIVISION
1st place: "The ThunderBots," Northridge Magnet School, Moreno Valley
2nd place: "...Bot Bunch V," Sycamore Hills Elementary School, Fontana
3rd place: "Rockin' Robots," Lake View Elementary, Huntington Beach

SECONDARY DIVISION
1st place: "Team Cocoa," Mesa Union School, Somis
2nd place: "Team Down Loadable Content," Roosevelt Middle School, Glendale
3rd place: "Robots Taking Over, " Charles T. Kranz Intermediate School, El Monte

INGENUITY AWARD
"Team Down Loadable Content, " Roosevelt Middle School, Glendale

BEST ROBOT DESIGN AWARD
"Team Cocoa," Mesa Union School, Somis

AGAINST ALL ODDS AWARD
"Steam Rollers," Lake View Elementary School, Huntington Beach

Thursday, March 17, 2011

Speed Demon Creates a Shock

0 comments
Just as some drivers obey the speed limit while others treat every road as if it were the Autobahn, some stars move through space faster than others.

NASA's Wide-field Infrared Survey Explorer, or WISE, captured this image of the star Alpha Camelopardalis, or Alpha Cam, in astronomer-speak, speeding through the sky like a motorcyclist zipping through rush-hour traffic. The supergiant star Alpha Cam is the bright star in the middle of this image, surrounded on one side by an arc-shaped cloud of dust and gas -- a bow shock -- which is colored red in this infrared view.

Such fast-moving stars are called runaway stars. The distance and speed of Alpha Cam is somewhat uncertain. It is probably somewhere between 1,600 and 6,900 light-years away and moving at an astonishing rate of somewhere between 680 and 4,200 kilometers per second (between 1.5 and 9.4 million mph).

It turns out that WISE is particularly adept at imaging bow shocks from runaway stars. Previous examples can be seen around Zeta Ophiuchi , AE Aurigae, and Menkhib. But Alpha Cam revs things up into a different gear. To put its speed into perspective, if Alpha Cam were a car driving across the United States at 4,200 kilometers per second, it would take less than one second to travel from San Francisco to New York City!

Astronomers believe runaway stars are set into motion either through the supernova explosion of a companion star or through gravitational interactions with other stars in a cluster. Because Alpha Cam is a supergiant star, it gives off a very strong wind. The speed of the wind is boosted in the forward direction the star is moving in space.

When this fast-moving wind slams into the slower-moving interstellar material, a bow shock is created, similar to the wake in front of the bow of a ship in water. The stellar wind compresses the interstellar gas and dust, causing it to heat up and glow in infrared. Alpha Cam's bow shock cannot be seen in visible light, but WISE's infrared detectors show us the graceful arc of heated gas and dust around the star.

JPL manages and operates the Wide-field Infrared Survey Explorer for NASA's Science Mission Directorate, Washington. The principal investigator, Edward Wright, is at UCLA. The mission was competitively selected under NASA's Explorers Program managed by the Goddard Space Flight Center, Greenbelt, Md.

The science instrument was built by the Space Dynamics Laboratory, Logan, Utah, and the spacecraft was built by Ball Aerospace & Technologies Corp., Boulder, Colo. Science operations and data processing take place at the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena. Caltech manages JPL for NASA. More information is online at http://www.nasa.gov/wise and http://wise.astro.ucla.edu and http://jpl.nasa.gov/wise .

Wednesday, March 16, 2011

Japan Quake May Have Shortened Earth Days, Moved Axis

0 comments
The March 11, magnitude 9.0 earthquake in Japan may have shortened the length of each Earth day and shifted its axis. But don't worry-you won't notice the difference.

Using a United States Geological Survey estimate for how the fault responsible for the earthquake slipped, research scientist Richard Gross of NASA's Jet Propulsion Laboratory, Pasadena, Calif., applied a complex model to perform a preliminary theoretical calculation of how the Japan earthquake-the fifth largest since 1900-affected Earth's rotation. His calculations indicate that by changing the distribution of Earth's mass, the Japanese earthquake should have caused Earth to rotate a bit faster, shortening the length of the day by about 1.8 microseconds (a microsecond is one millionth of a second).

The calculations also show the Japan quake should have shifted the position of Earth's figure axis (the axis about which Earth's mass is balanced) by about 17 centimeters (6.5 inches), towards 133 degrees east longitude. Earth's figure axis should not be confused with its north-south axis; they are offset by about 10 meters (about 33 feet). This shift in Earth's figure axis will cause Earth to wobble a bit differently as it rotates, but it will not cause a shift of Earth's axis in space-only external forces such as the gravitational attraction of the sun, moon and planets can do that.

Both calculations will likely change as data on the quake are further refined.

In comparison, following last year's magnitude 8.8 earthquake in Chile, Gross estimated the Chile quake should have shortened the length of day by about 1.26 microseconds and shifted Earth's figure axis by about 8 centimeters (3 inches).

A similar calculation performed after the 2004 magnitude 9.1 Sumatran earthquake revealed it should have shortened the length of day by 6.8 microseconds and shifted Earth's figure axis by about 7 centimeters, or 2.76 inches. How an individual earthquake affects Earth's rotation depends on its size (magnitude), location and the details of how the fault slipped.

Gross said that, in theory, anything that redistributes Earth's mass will change Earth's rotation.

"Earth's rotation changes all the time as a result of not only earthquakes, but also the much larger effects of changes in atmospheric winds and oceanic currents," he said. "Over the course of a year, the length of the day increases and decreases by about a millisecond, or about 550 times larger than the change caused by the Japanese earthquake. The position of Earth's figure axis also changes all the time, by about 1 meter (3.3 feet) over the course of a year, or about six times more than the change that should have been caused by the Japan quake."

Gross said that while we can measure the effects of the atmosphere and ocean on Earth's rotation, the effects of earthquakes, at least up until now, have been too small to measure. The computed change in the length of day caused by earthquakes is much smaller than the accuracy with which scientists can currently measure changes in the length of the day.

However, since the position of the figure axis can be measured to an accuracy of about 5 centimeters (2 inches), the estimated 17-centimeter shift in the figure axis from the Japan quake may actually be large enough to observe if scientists can adequately remove the larger effects of the atmosphere and ocean from the Earth rotation measurements. He and other scientists will be investigating this as more data become available.

Gross said the changes in Earth's rotation and figure axis caused by earthquakes should not have any impacts on our daily lives. "These changes in Earth's rotation are perfectly natural and happen all the time," he said. "People shouldn't worry about them."

Tuesday, March 15, 2011

NASA Study Goes to Earth's Core for Climate Insights

0 comments
The latest evidence of the dominant role humans play in changing Earth's climate comes not from observations of Earth's ocean, atmosphere or land surface, but from deep within its molten core.

Scientists have long known that the length of an Earth day - the time it takes for Earth to make one full rotation - fluctuates around a 24-hour average. Over the course of a year, the length of a day varies by about 1 millisecond, getting longer in the winter and shorter in the summer. These seasonal changes in Earth's length of day are driven by exchanges of energy between the solid Earth and fluid motions of Earth's atmosphere (blowing winds and changes in atmospheric pressure) and its ocean. Scientists can measure these small changes in Earth's rotation using astronomical observations and very precise geodetic techniques.

But the length of an Earth day also fluctuates over much longer timescales, such as interannual (two to 10 years), decadal (approximately 10 years), or those lasting multiple decades or even longer. A dominant longer timescale mode that ranges from 65 to 80 years was observed to change the length of day by approximately 4 milliseconds at the beginning of the 20th century.

These longer fluctuations are too large to be explained by the motions of Earth's atmosphere and ocean. Instead, they're due to the flow of liquid iron within Earth's outer core, where Earth's magnetic field originates. This fluid interacts with Earth's mantle to affect Earth's rotation. While scientists cannot observe these flows directly, they can deduce their movements by observing Earth's magnetic field at the surface. Previous studies have shown that this flow of liquid iron in Earth's outer core oscillates, in waves of motion that last for decades with timescales that correspond closely to long-duration variations in Earth's length of day.

Still other studies have observed a link between the long-duration variations in Earth's length of day and fluctuations of up to 0.2 degrees Celsius (0.4 degree Fahrenheit) in Earth's long-term global average surface air temperature.

So how might all three of these variables - Earth's rotation, movements in Earth's core (formally known as the core angular momentum) and global surface air temperature - be related? That's what researchers Jean Dickey and Steven Marcus of NASA's Jet Propulsion Laboratory, Pasadena, Calif., and colleague Olivier de Viron of the Universite Paris Diderot and Institut de Physique du Globe de Paris in France, set out to discover in a first-of-its-kind study.

The scientists mapped existing data from a model of fluid movements within Earth's core and data on yearly averaged length-of-day observations against two time series of observed annual global average surface temperature: one from NASA's Goddard Institute of Space Studies in New York that extends back to 1880, and another from the United Kingdom's Met Office that extends back to 1860.

Since total air temperature is composed of two components - temperature changes that occur naturally and those caused by human activities - the researchers used results from computer climate models of Earth's atmosphere and ocean to account for temperature changes due to human activities. These human-produced temperature changes were then subtracted from the total observed temperature records to generate corrected temperature records.

The researchers found that the uncorrected temperature data correlated strongly with data on movements of Earth's core and Earth's length of day until about 1930. They then began to diverge substantially: that is, global surface air temperatures continued to increase, but without corresponding changes in Earth's length of day or movements of Earth's core. This divergence corresponds with a well-documented, robust global warming trend that has been widely attributed to increased levels of human-produced greenhouse gases.

But an examination of the corrected temperature record yielded a different result: the corrected temperature record remained strongly correlated with both Earth's length of day and movements of Earth's core throughout the entire temperature data series. The researchers performed robust tests to confirm the statistical significance of their results.

"Our research demonstrates that, for the past 160 years, decadal and longer-period changes in atmospheric temperature correspond to changes in Earth's length of day if we remove the very significant effect of atmospheric warming attributed to the buildup of greenhouse gases due to mankind's enterprise," said Dickey. "Our study implies that human influences on climate during the past 80 years mask the natural balance that exists among Earth's rotation, the core angular momentum and the temperature at Earth's surface."

So what mechanism is driving these correlations? Dickey said scientists aren't sure yet, but she offered some hypotheses.

Since scientists know air temperature can't affect movements of Earth's core or Earth's length of day to the extent observed, one possibility is the movements of Earth's core might disturb Earth's magnetic shielding of charged-particle (i.e., cosmic ray) fluxes that have been hypothesized to affect the formation of clouds. This could affect how much of the sun's energy is reflected back to space and how much is absorbed by our planet. Other possibilities are that some other core process could be having a more indirect effect on climate, or that an external (e.g. solar) process affects the core and climate simultaneously.

Regardless of the eventual connections to be established between the solid Earth and climate, Dickey said the solid Earth's impacts on climate are still dwarfed by the much larger effects of human-produced greenhouse gases. "The solid Earth plays a role, but the ultimate solution to addressing climate change remains in our hands," she concluded.

Study results were published recently in the Journal of Climate.

For more information, see: http://www.jpl.nasa.gov/news/features.cfm?feature=2420 and
http://www.jpl.nasa.gov/news/features.cfm?feature=15 .

Friday, March 11, 2011

Some of Mars' Missing Carbon Dioxide May be Buried

0 comments
Rocks on Mars dug from far underground by crater-blasting impacts are providing glimpses of one possible way Mars' atmosphere has become much less dense than it used to be.

At several places where cratering has exposed material from depths of about 5 kilometers (3 miles) or more beneath the surface, observations by a mineral-mapping instrument on NASA's Mars Reconnaissance Orbiter indicate carbonate minerals.

These are not the first detections of carbonates on Mars. However, compared to earlier findings, they bear closer resemblance to what some scientists have theorized for decades about the whereabouts of Mars' "missing" carbon. If deeply buried carbonate layers are found to be widespread, they would help answer questions about the disappearance of most of ancient Mars' atmosphere, which is deduced to have been thick and mostly carbon dioxide. The carbon that goes into formation of carbonate minerals can come from atmospheric carbon dioxide.

"We're looking at a pretty lucky location in terms of exposing something that was deep beneath the surface," said planetary scientist James Wray of Cornell University, Ithaca, N.Y., who reported the latest carbonate findings today at the Lunar and Planetary Science Conference near Houston. Huygens crater, a basin 467 kilometers (290 miles) in diameter in the southern highlands of Mars, had already hoisted material from far underground, and then the rim of Huygens, containing the lifted material, was drilled into by a smaller, unnamed cratering event.

Observations in the high-resolution mode of the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument on the Mars Reconnaissance Orbiter show spectral characteristics of calcium or iron carbonate at this site. Detections of clay minerals in lower-resolution mapping mode by CRISM had prompted closer examination with the spectrometer, and the carbonates are found near the clay minerals. Both types of minerals typically form in wet environments.

The occurrence of this type of carbonate in association with the largest impact features suggests that it was buried by a few kilometers (or miles) of younger rocks, possibly including volcanic flows and fragmented material ejected from other, nearby impacts.

These findings reinforce a report by other researchers five months ago identifying the same types of carbonate and clay minerals from CRISM observation of a site about 1,000 kilometers (600 miles) away. At that site, a meteor impact has exposed rocks from deep underground, inside Leighton crater. In their report of that discovery, Joseph Michalski of the Planetary Science Institute, Tucson, Ariz., and Paul Niles of NASA Johnson Space Center, Houston, proposed that the carbonates at Leighton "might be only a small part of a much more extensive ancient sedimentary record that has been buried by volcanic resurfacing and impact ejecta."

Carbonates found in rocks elsewhere on Mars, from orbit and by NASA's Spirit rover, are rich in magnesium. Those could form from reaction of volcanic deposits with moisture, Wray said. "The broader compositional range we're seeing that includes iron-rich and calcium-rich carbonates couldn't form as easily from just a little bit of water reacting with igneous rocks. Calcium carbonate is what you typically find on Earth's ocean and lake floors."

He said the carbonates at Huygens and Leighton "fit what would be expected from atmospheric carbon dioxide interacting with ancient bodies of water on Mars." Key additional evidence would be to find similar deposits in other regions of Mars. A hunting guide for that search is the CRISM low-resolution mapping, which has covered about three-fourths of the planet and revealed clay-mineral deposits at thousands of locations.

"A dramatic change in atmospheric density remains one of the most intriguing possibilities about early Mars," said Mars Reconnaissance Orbiter Project Scientist Richard Zurek, of NASA's Jet Propulsion Laboratory, Pasadena, Calif. "Increasing evidence for liquid water on the surface of ancient Mars for extended periods continues to suggest that the atmosphere used to be much thicker."

Carbon dioxide makes up nearly all of today's Martian air and likely was most of a thicker early atmosphere, too. In today's thin, cold atmosphere, liquid water quickly freezes or boils away.

What became of that carbon dioxide? NASA will launch the Mars Atmosphere and Volatile Evolution Mission (MAVEN) in 2013 to investigate processes that could have stripped the gas from the top of the atmosphere into interplanetary space. Meanwhile, CRISM and other instruments now in orbit continue to look for evidence that some of the carbon dioxide in that ancient atmosphere was removed, in the presence of liquid water, by formation of carbonate minerals now buried far beneath the present surface.

The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., provided and operates CRISM, one of six instruments on the Mars Reconnaissance Orbiter. JPL, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter project and the Mars Exploration Program for the NASA Science Mission Directorate, Washington. For more about CRISM, see http://crism.jhuapl.edu . For more about the Mars Reconnaissance Orbiter, visit http://www.nasa.gov/mro .

Thursday, March 10, 2011

NASA Finds Polar Ice Adding More to Rising Seas

0 comments
The Greenland and Antarctic ice sheets are losing mass at an accelerating pace, according to a new NASA-funded satellite study. The findings of the study -- the longest to date of changes in polar ice sheet mass -- suggest these ice sheets are overtaking ice loss from Earth's mountain glaciers and ice caps to become the dominant contributor to global sea level rise, much sooner than model forecasts have predicted.

The nearly 20-year study reveals that in 2006, a year in which comparable results for mass loss in mountain glaciers and ice caps are available from a separate study conducted using other methods, the Greenland and Antarctic ice sheets lost a combined mass of 475 gigatonnes a year on average. That's enough to raise global sea level by an average of 1.3 millimeters (.05 inches) a year. (A gigatonne is one billion metric tons, or more than 2.2 trillion pounds.)

The pace at which the polar ice sheets are losing mass was found to be accelerating rapidly. Each year over the course of the study, the two ice sheets lost a combined average of 36.3 gigatonnes more than they did the year before. In comparison, the 2006 study of mountain glaciers and ice caps estimated their loss at 402 gigatonnes a year on average, with a year-over-year acceleration rate three times smaller than that of the ice sheets.

"That ice sheets will dominate future sea level rise is not surprising -- they hold a lot more ice mass than mountain glaciers," said lead author Eric Rignot, jointly of NASA's Jet Propulsion Laboratory, Pasadena, Calif., and the University of California, Irvine. "What is surprising is this increased contribution by the ice sheets is already happening. If present trends continue, sea level is likely to be significantly higher than levels projected by the United Nations Intergovernmental Panel on Climate Change in 2007. Our study helps reduce uncertainties in near-term projections of sea level rise."

Rignot's team combined nearly two decades (1992-2009) of monthly satellite measurements with advanced regional atmospheric climate model data to examine changes in ice sheet mass and trends in acceleration of ice loss.

The study compared two independent measurement techniques. The first characterized the difference between two sets of data: interferometric synthetic aperture radar data from European, Canadian and Japanese satellites and radio echo soundings, which were used to measure ice exiting the ice sheets; and regional atmospheric climate model data from Utrecht University, The Netherlands, used to quantify ice being added to the ice sheets. The other technique used eight years of data from the NASA/German Aerospace Center's Gravity Recovery and Climate Experiment (Grace) satellites, which track minute changes in Earth's gravity field due to changes in Earth's mass distribution, including ice movement.

The team reconciled the differences between techniques and found them to be in agreement, both for total amount and rate of mass loss, over their data sets' eight-year overlapping period. This validated the data sets, establishing a consistent record of ice mass changes since 1992.

The team found that for each year over the 18-year study, the Greenland ice sheet lost mass faster than it did the year before, by an average of 21.9 gigatonnes a year. In Antarctica, the year-over-year speedup in ice mass lost averaged 14.5 gigatonnes.

"These are two totally independent techniques, so it is a major achievement that the results agree so well," said co-author Isabella Velicogna, also jointly with JPL and UC Irvine. "It demonstrates the tremendous progress that's being made in estimating how much ice the ice sheets are gaining and losing, and in analyzing Grace's time-variable gravity data."

The authors conclude that, if current ice sheet melting rates continue for the next four decades, their cumulative loss could raise sea level by 15 centimeters (5.9 inches) by 2050. When this is added to the predicted sea level contribution of 8 centimeters (3.1 inches) from glacial ice caps and 9 centimeters (3.5 inches) from ocean thermal expansion, total sea level rise could reach 32 centimeters (12.6 inches). While this provides one indication of the potential contribution ice sheets could make to sea level in the coming century, the authors caution that considerable uncertainties remain in estimating future ice loss acceleration.

Study results are published this month in Geophysical Research Letters. Other participating institutions include the Institute for Marine and Atmospheric Research, Utrecht University, The Netherlands; and the National Center for Atmospheric Research, Boulder, Colo.

JPL developed Grace and manages the mission for NASA. The University of Texas Center for Space Research in Austin has overall mission responsibility. GeoForschungsZentrum Potsdam (GFZ), Potsdam, Germany, is responsible for German mission elements.

More on Grace is online at http://www.csr.utexas.edu/grace/ and http://grace.jpl.nasa.gov/ .

JPL is managed for NASA by the California Institute of Technology in Pasadena.

Wednesday, March 09, 2011

NASA's Jupiter-Bound Spacecraft Taking Shape In Denver

0 comments
NASA's Juno spacecraft is currently undergoing environmental testing at Lockheed Martin Space Systems near Denver. The solar-powered Juno spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere. The launch window for Juno from the Cape Canaveral Air Force Station in Florida opens Aug. 5, 2011.

In its present form, the spacecraft is fully assembled and all instruments have been integrated. A photograph of the fully assembled spacecraft is available at: http://www.nasa.gov/mission_pages/juno/multimedia/juno20110307i.html

In this photo, taken on Jan. 26, Juno had just completed acoustics testing that simulated the acoustic and vibration environment the spacecraft will experience during launch. The photo shows Lockheed Martin technicians inspecting the spacecraft just after the test. All three solar array wings are installed and stowed, and the spacecraft's large high-gain antenna is in place on the top of the avionics vault.

At present, Juno is sealed in a large thermal vacuum chamber, where it is being exposed to the extreme cold and vacuum conditions it will experience on its voyage to Jupiter. The two-week-long test will simulate many of the flight activities the spacecraft will execute during the mission.

Juno is scheduled to ship from Lockheed Martin's facility to Kennedy Space Center in early April, where it will undergo final preparations and launch.

NASA's Jet Propulsion Laboratory, Pasadena, Calif., manages the Juno mission for the principal investigator, Scott Bolton, of Southwest Research Institute at San Antonio, Texas. Lockheed Martin Space Systems, Denver, is building the spacecraft. The Italian Space Agency in Rome is contributing an infrared spectrometer instrument and a portion of the radio science experiment. JPL is a division of the California Institute of Technology in Pasadena.

Monday, March 07, 2011

Double Vision: NASA Earth Satellites Prep for Launch

0 comments
In a rare event, two NASA launch vehicles currently rise above California's Vandenberg Air Force Base, as NASA's two, new Earth monitoring satellites, Glory and Aquarius, ready for their respective launches.

Both the Glory spacecraft and Taurus XL rocket are ready for launch Friday, March 4, at 2:09:43 a.m. PST (5:09:43 a.m. EST). The weather forecast is 100 percent "go," with the possibility of some fog and a low ceiling not expected to be an issue.

The liftoff from Vandenberg Air Force Base (Launch Complex 576-E) is targeted for the middle of a 48-second launch window. Spacecraft separation will occur 13 minutes after launch.

Technical issues with ground support equipment for the Taurus XL launch vehicle led to the scrub of the first launch attempt on Feb. 23.

Data from the Glory mission will allow scientists to better understand how the sun and tiny atmospheric particles called aerosols affect Earth's climate. Both aerosols and solar energy influence the planet's energy budget -- the amount of energy entering and exiting Earth's atmosphere.

Meanwhile, nearby, the first stage of the Delta II rocket that will carry NASA's Aquarius instrument into low Earth orbit has been raised onto its launch pad at Vandenberg Air Force Base's Space Launch Complex-2 (SLC-2).

Scheduled to launch in June, Aquarius' mission will provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural interplay of freshwater among the ocean, atmosphere and sea ice influences ocean circulation, weather and climate.

Aquarius will launch on the Satélite de Aplicaciones Científicas (SAC)-D spacecraft, built by Argentina's Comision Nacional de Actividades Espaciales (CONAE). The SAC-D spacecraft and its Aquarius instrument are scheduled to be shipped from South America to the launch site in late March. The Aquarius instrument was built jointly by NASA's Jet Propulsion Laboratory, Pasadena, Calif., and NASA's Goddard Space Flight Center, Greenbelt, Md.

Saturday, March 05, 2011

Advanced NASA Instrument Gets Close-up on Mars Rocks

0 comments
NASA's Mars Science Laboratory rover, Curiosity, will carry a next generation, onboard "chemical element reader" to measure the chemical ingredients in Martian rocks and soil.

The instrument is one of 10 that will help the rover in its upcoming mission to determine the past and present habitability of a specific area on the Red Planet. Launch is scheduled between Nov. 25 and Dec. 18, 2011, with landing in August 2012.

The Alpha Particle X-Ray Spectrometer (APXS) instrument, designed by physics professor Ralf Gellert of the University of Guelph in Ontario, Canada, uses the power of alpha particles, or helium nuclei, and X-rays to bombard a target, causing the target to give off its own characteristic alpha particles and X-ray radiation. This radiation is "read by" an X-ray detector inside the sensor head, which reveals which elements and how much of each are in the rock or soil.

Identifying the elemental composition of lighter elements such as sodium, magnesium or aluminum, as well as heavier elements like iron, nickel or zinc, will help scientists identify the building blocks of the Martian crust. By comparing these findings with those of previous Mars rover findings, scientists can determine if any weathering has taken place since the rock formed ages ago.

All NASA Mars rovers have carried a similar instrument – Pathfinder's rover Sojourner, Spirit and Opportunity, and now Curiosity, too. Improvements have been made with each generation, but the basic design of the instrument has remained the same.

"APXS was modified for Mars Science Laboratory to be faster so it could make quicker measurements. On the Mars Exploration Rovers [Spirit and Opportunity] it took us five to 10 hours to get information that we will now collect in two to three hours," said Gellert, the instrument's principal investigator. "We hope this will help us to investigate more samples."

Another significant change to the next-generation APXS is the cooling system on the X-ray detector chip. The instruments used on Spirit and Opportunity were able to take measurements only at night. But the new cooling system will allow the instrument on Curiosity to take measurements during the day, too.

The main electronics portion of the tissue-box-sized instrument lives in the rover's body, while the sensor head, the size of a soft drink can, is mounted on the robotic arm. With the help of Curiosity's remote sensing instruments – the Chemistry and Camera (ChemCam) instrument and the Mastcam – the rover team will decide where to drive Curiosity for a closer look with the instruments, including APXS. Measurements are taken with the APXS by deploying the sensor head to make direct contact with the desired sample.

The rover's brush will be used to remove dust from rocks to prepare them for inspection by APXS and by MAHLI, the rover's arm-mounted, close-up camera. Whenever promising samples are found, the rover will then use its drill to extract a few grains and feed them into the rover's analytical instruments, SAM and CheMin, which will then make very detailed mineralogical and other investigations.

Scientists will use information from APXS and the other instruments to find the interesting spots and to figure out the present and past environmental conditions that are preserved in the rocks and soils.

"The rovers have answered a lot of questions, but they've also opened up new questions," said Gellert. "Curiosity was designed to pick up where Spirit and Opportunity left off."

For more information about the mission, visit http://mars.jpl.nasa.gov/msl/ . To watch the spacecraft being assembled and tested, visit http://www.ustream.tv/nasajpl .

JPL, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory mission for the NASA Science Mission Directorate, Washington.

The MSL APXS is funded by the Canadian Space Agency, with MDA Corporation as prime subcontractor to build the instrument. Funding for the science team comes from CSA, NASA, and the University of Guelph.

Friday, March 04, 2011

NASA Earth Satellites Prep for Launch

0 comments
In a rare event, two NASA launch vehicles currently rise above California's Vandenberg Air Force Base, as NASA's two, new Earth monitoring satellites, Glory and Aquarius, ready for their respective launches.

Both the Glory spacecraft and Taurus XL rocket are ready for launch Friday, March 4, at 2:09:43 a.m. PST (5:09:43 a.m. EST). The weather forecast is 100 percent "go," with the possibility of some fog and a low ceiling not expected to be an issue.

The liftoff from Vandenberg Air Force Base (Launch Complex 576-E) is targeted for the middle of a 48-second launch window. Spacecraft separation will occur 13 minutes after launch.

Technical issues with ground support equipment for the Taurus XL launch vehicle led to the scrub of the first launch attempt on Feb. 23.

Data from the Glory mission will allow scientists to better understand how the sun and tiny atmospheric particles called aerosols affect Earth's climate. Both aerosols and solar energy influence the planet's energy budget -- the amount of energy entering and exiting Earth's atmosphere.

Meanwhile, nearby, the first stage of the Delta II rocket that will carry NASA's Aquarius instrument into low Earth orbit has been raised onto its launch pad at Vandenberg Air Force Base's Space Launch Complex-2 (SLC-2).

Scheduled to launch in June, Aquarius' mission will provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural interplay of freshwater among the ocean, atmosphere and sea ice influences ocean circulation, weather and climate.

Aquarius will launch on the Satélite de Aplicaciones Científicas (SAC)-D spacecraft, built by Argentina's Comision Nacional de Actividades Espaciales (CONAE). The SAC-D spacecraft and its Aquarius instrument are scheduled to be shipped from South America to the launch site in late March. The Aquarius instrument was built jointly by NASA's Jet Propulsion Laboratory, Pasadena, Calif., and NASA's Goddard Space Flight Center, Greenbelt, Md.

Wednesday, March 02, 2011

Herschel Measures Dark Matter for Star-Forming Galaxies

0 comments
The Herschel Space Observatory has revealed how much dark matter it takes to form a new galaxy bursting with stars. Herschel is a European Space Agency cornerstone mission supported with important NASA contributions.

The findings are a key step in understanding how dark matter, an invisible substance permeating our universe, contributed to the birth of massive galaxies in the early universe.

"If you start with too little dark matter, then a developing galaxy would peter out," said astronomer Asantha Cooray of the University of California, Irvine. He is the principal investigator of new research appearing in the journal Nature, online on Feb. 16 and in the Feb. 24 print edition. "If you have too much, then gas doesn't cool efficiently to form one large galaxy, and you end up with lots of smaller galaxies. But if you have the just the right amount of dark matter, then a galaxy bursting with stars will pop out."

The right amount of dark matter turns out to be a mass equivalent to 300 billion of our suns.

Herschel launched into space in May 2009. The mission's large, 3.5-meter (11.5-foot) telescope detects longer-wavelength infrared light from a host of objects, ranging from asteroids and planets in our own solar system to faraway galaxies.

"This remarkable discovery shows that early galaxies go through periods of star formation much more vigorous than in our present-day Milky Way," said William Danchi, Herschel program scientist at NASA Headquarters in Washington. "It showcases the importance of infrared astronomy, enabling us to peer behind veils of interstellar dust to see stars in their infancy."

Cooray and colleagues used the telescope to measure infrared light from massive, star-forming galaxies located 10 to 11 billion light-years away. Astronomers think these and other galaxies formed inside clumps of dark matter, similar to chicks incubating in eggs.

Giant clumps of dark matter act like gravitational wells that collect the gas and dust needed for making galaxies. When a mixture of gas and dust falls into a well, it condenses and cools, allowing new stars to form. Eventually enough stars form, and a galaxy is born.

Herschel was able to uncover more about how this galaxy-making process works by mapping the infrared light from collections of very distant, massive star-forming galaxies. This pattern of light, called the cosmic infrared background, is like a web that spreads across the sky. Because Herschel can survey large areas quickly with high resolution, it was able to create the first detailed maps of the cosmic infrared background.

"It turns out that it's much more effective to look at these patterns rather than the individual galaxies," said Jamie Bock of NASA's Jet Propulsion Laboratory in Pasadena, Calif. Bock is the U.S. principal investigator for Herschel's Spectral and Photometric Imaging Receiver instrument used to make the maps. "This is like looking at a picture in a magazine from a reading distance. You don't notice the individual dots, but you see the big picture. Herschel gives us the big picture of these distant galaxies, showing the influence of dark matter."

The maps showed the galaxies are more clustered into groups than previously believed. The amount of galaxy clustering depends on the amount of dark matter. After a series of complicated numerical simulations, the astronomers were able to determine exactly how much dark matter is needed to form a single star-forming galaxy.

"This measurement is important, because we are homing in on the very basic ingredients in galaxy formation," said Alexandre Amblard of UC Irvine, first author of the Nature paper. "In this case, the ingredient, dark matter, happens to be an exotic substance that we still have much to learn about."

NASA's Herschel Project Office is based at JPL, which contributed mission-enabling technology for two of Herschel's three science instruments. The NASA Herschel Science Center, part of the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena, supports the U.S. astronomical community. JPL is managed by Caltech.

More information is online at http://www.herschel.caltech.edu, http://www.nasa.gov/herschel and http://www.esa.int/SPECIALS/Herschel/index.html .

Tuesday, March 01, 2011

Cassini to Sample Magnetic Environment around Titan

0 comments
NASA's Cassini spacecraft is set to skim close to Saturn's moon Titan on Friday, Feb. 18, to learn about the interaction between Titan and Saturn's magnetosphere, the magnetic bubble around the planet.

The closest approach will take place at 8:04 a.m. PST (4:04 p.m. UTC) and bring Cassini within about 3,650 kilometers (2,270 miles) of Titan's surface.

As Titan makes a complete 360-degree orbit around Saturn, the relative influence of the sun's illumination and the hot ionized gas trapped in the magnetic bubble changes. These factors are important for understanding the relationship between Titan and Saturn's magnetosphere. It is important to make measurements at a variety of locations in the Saturn magnetosphere, so this flyby will occur in a part of the magnetosphere that has been poorly sampled so far.

Previous flybys have shown the magnetic environment near Titan to be rather variable and unpredictable. For 12 hours before and after closest approach, the Cassini plasma spectrometer instrument will be pointing in a direction to capture ionized gas in the region.

At the same time, Cassini's radio science subsystem will be gathering sensitive gravity data from Titan to improve understanding of the structure of the interior. Collecting data like these will eventually enable scientists to determine whether Titan has an ocean under its crust.

Other instruments will also be collecting data, much of it pertaining to seasonal change. Titan is currently in northern spring, approaching northern summer, and scientists want to know what has changed with the north polar winter vortex weather pattern. The composite infrared spectrometer, for instance, will be mapping temperatures in Titan's stratosphere. The imaging science subsystem will also be monitoring the lakes, clouds and transport of aerosols in the Titan atmosphere.

This latest flyby is dubbed "T74," though planning changes early in the orbital tour have made this the 75th targeted flyby of Titan.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter was designed, developed and assembled at JPL.

More information about the flyby is available at:
http://saturn.jpl.nasa.gov/mission/flybys/titan20110218/